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NOMENCLATURE 

u, velocity; 
r, radial co-ordinate; 
ro, radius of tube; 
P9 distance from wall; 
.f ( ), function of; 
T, temperature; 
A, total Prandtl number; 
D, a constant; 
k, Nikuradze roughness parameter; 
v, kinematic viscosity; 
K. thermal diffusivity; 
EJI, eddy viscosity; 

Prandtl number for temperature. The ordinate method is 
based on measuring the velocity or temperature at a 
point where its value is equal to the average value. 

This note considers the applications of defect profiles 
to these methods. While we are also limited to the 
restriction of essentially isothermal flow so that there is 
no marked variation of fluid properties across the profile, 
our results for the ordinate method are also applicable 
to rough pipes. 

cl{, eddy diffusivity; 
A, friction coefficient ; 
4 limit of velocity defect function as Y+ ro, 

Dimensionless groups 
Re, Reynolds number based on diameter and average 

velocity; 
Pr, Prandtl number. 

BACKGROUND ON TURBULENT FLOW 

It is well known that the velocity profiles for both 
smooth and rough pipe are described quite well by the 
defect law 

The best known expression is the familiar logarithmic 
law 

u, - u r0 
--- = 5.5 log,, Y-7. 
UT 0 

Subscripts We will refer to expressions such as this which become 
t’. value at axis; 
av, average value, for rO value at which local value 

infinite as r + rO as divergent. For parts of the present 
analysis it is preferable to have an expression for the 

equals average; 
6, value at edge of sublayer; 

velocity defect which approaches a finite value as r + ro. 
This type of expression will be referred to as convergent. 

7, friction. The expression [2] 

INTRODUCTION 
THE problem of determining the average velocity or 
temperature of a fluid flowing turbulently through a 
round pipe by a measurement at a single point is of some 
practical importance because of the inconvenience of 
making traverses or using mixing chambers. 

r 2 0 - = 0.189 fif__!! exp ()$)@I5 !!_C?! (3) 
r0 UT UT 

is used for specific calculations, but the general method 
can be used with any expression. 

Recently Rogers and Mayhew [l] analyzed two 
methods using the universal velocity and temperature 
distribution laws for turbulent flow in smooth pipes. 
The axial method uses the velocity or temperature on 
the axis and a correction factor which is a function of 
Reynolds number for the velocity and of Reynolds and 

A convergent expression is inconsistent with the usual 
assumption that the junction between the turbulent core 
and the laminar sublayer occurs at a fixed value of u&ii 
as this would imply a constant friction coefficient. On the 
basis of Nikuradze’s data, the relation 

UC5 
-- = 5.25 log,, (Re Y lo-“) 
UT @a) 

was obtained [2]. For fully developed roughness it was 
found that 

~_ _..- 
* This is a condensed version of a Southwest Research 

Institute report dated August 1960 on Internal Research 
Project 906-2. 

us -- = 58.5 log In (; x 10-l). 
I& 
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The author [2, 3] has suggested that there is a relation 
between the temperature and velocity profiles of the 
form 

where the friction temperature T, is 

IC dT 

--I . UT dr r=rO 

The proportionality factor A can be interpreted as a 
total Prandtl number, i.e. the ratio of the sum of the eddy 
and molecular viscosities to the sum of the eddy and 
molecular diffusivities. An expression 

A _ 1.41 Re Pr v’h + 4OPr __-- 
1.20 RePr v/X +- 40 

was proposed for A. While the direct experimental 
evidence is incomplete, particularly for A << 1, the 
derivation of a heat transfer relation in good a~eement 
with experiment in the liquid metal range is an indirect 
verification. 

There are two types of average temperature in the 
literature. The theorists prefer the average defined by 

while the exper~mentalists prefer the bulk average 
defined by 

f“JruTdr 
_9-__ , 

s: rudr 

since it is easier to measure. The difference is small and 
usually neglected. 

Tm ORDINATE! METHOD 
It is obvious that if the defect law is assumed the 

ordinate at which the local velocity is equal to the average 
velocity is independent of Reynolds number or rough- 
ness. This is related to the well-known Prandtl rule that 

UC - Uav 
____-- = D 2 4.01. 

% 

To obtain the value of the ordinate it is necessary to solve 

D =f, [z)* 

Either a divergent or convergent velocity distribution 
may be used. Using expression (3) gives rav = 0.76 r, as 
the ordinate for the velocity determination. This agrees 
closely with Jakob [4] who claimed that a measurement 
at 0.77 r,, would determine the average velocity within 
1 per cent. The variation obtained by Rogers and May- 
hew is also relatively small going from 0.808 r, at Re = 1@ 
to 0.777 r0 at Ile = 10’. 

Similarly if we assume the temperature defect law, 
equation (5), it can be seen that the ordinate at which the 

temperature is equal to the average temperature is the 
same as for the velocity determination, irrespective of 
the exact form of the expression for A. The evaluation 
of the ordinate for determining the bulk average tempera- 
ture is more difficult and requires specific functional forms 
for the distributions. The ordinate will be a function of 
Reynolds and Prandtl number so that convenience is lost. 

THE AXIAL METHOD 
The simp~~cat~on of the analytical results for the 

ordinate method obtained in the previous section does not 
change the fact that it uses a measurement at a point 
where the gradient is appreciable, while the axial method 
uses a measurement less subject to positioning error. 
While the calculation of the correction factor requires 
more specific assumptions, they are simpler than the 
corresponding assumptions utilizing the universal law. 

To compute the ratio of average to maximum velocity, 
it is necessary to use a convergent (in the sense of this 
paper) velocity distribution. If we designate the limit of 
(u, - u)/u, by d we have 

U&l - _ 1 -. ? ._- 
II, (N&f,) -t- d’ 

In conjunction with (4) this gives 

(9) 

lb. .zj-_- 4.07 

(6, 14.4 $ 5.25 log,, Re ,. 1O-3 
(IO) 

for smooth pipes. In Fig. 1 this correction factor is 
compared with these proposed by Rogers and Mayhew 
and by Jakob. Some of Nikuradze’s experimental points. 
as tabulated by Bates [5] are shown for comparison. It 
should, however, be noted that there is some dispute [6] 
about the data reduction. 

In conjunction with equation (5) the relation 

Nav 

-=l--lG-- 
4.07 

T 5.85 log,, (r,/k) :. iiF1 01) 
4 

is obtained for rough pipes. In Fig. 2 this is compared 
with some of Nikuradze’s experimental data [7]. 

The derivation of the correction factor for the average 
temperature requires an explicit expression such as (6) 
for the total Prandtl number and an expression for 
7’,/T,. In [3] the relation 

5 _= pf. us 
rp . . 

was proposed, but it is limited to smooth pipes and may 
not be valid for large Pr. However, the analysis employed 
by Rogers and Mayhew is in the same category in regard 
to behavior at large Pr. The analog of (10) is 

4.07 
1_-__ --- 

14.4 + 5,25 1 + 0.030 Re Pr z/h 
I+ @035 Re %/ X 

log,, Re x lo- ’ 

(13) 
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FIG. I. Cmrecfion factor for axial rneihc~d of average veIocify defe~natian in smooth pipe. 
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FIG. 3. Correction factor for axial method of average temperature determination in smooth pipe. 

which is plotted in Fig. 3 with Mayhew and Rogers’ There is obviously a need for further experimental 
factor for the bulk average. The calculation of the bulk work, particularly on the temperature distribution, to 
average can be carried out by the present analysis but resolve the discrepancies between the analysis based on 
requires a specific expression for f(r/ro). It is believed the defect law and the analysis based on the universal 
that the difference between the average and buik average profiles. In particular, closely spaced measurements in 
is not large enough to account for the difference between the neighborhood of the ordinate where the local value is 
the two analyses. equal to the average value are needed. 

DISCUSSION 
We have shown that the use of the defect laws results 

in an appreciable simplification of the analysis, but gives 
results somewhat different from those obtained using the 
universal laws. Actually, the defect law and the universal 
law are not exact mathematical relations but approxima- 
tions of limited accuracy. For example, a critical examina- 
tion of Nikuradze’s data by Robertson (81 indicates a 
systematic difference in the value of D between smooth 
and rough pipes and a slight Reynolds number depen- 
dence. This may explain the small systematic discrepancy 
between the theoretical and experimental points in 
Fig. 2. 
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